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Abstract

In this paper, we investigate the use of full spherical
panoramic images for Structure from Motion (SFM) algo-
rithms. We introduce several error models for solving the
pose problem and the relative pose problem for central pro-
Jjection cameras, and study the effect of these models on the
convergence in the algorithm’s optimization steps. We for-
mulate our method using a spherical imaging model, that
covers all central projection cameras, including catadiop-
tric and dioptric systems, as well as the standard projective
pinhole camera. We use this error formulation in a Struc-
ture from Motion pipeline with full spherical panoramic
cameras.

1. Introduction

Acquisition of panoramic or full spherical images has
become a very common practice for documentation and
visualisation of scenes. Applications like Google Street
View or Google Art Project [3] deliver millions of spherical
views, and (full-)panoramic imaging is not anymore prerog-
ative of professional photographers. In contrast to standard
omnidirectional cameras using fisheye lenses or catadiop-
tric system using curved mirrors, spherical imaging is not
limited to a hemispherical field of view, but captures a com-
plete scene in a 360° x 180° panorama from a single point
in space. There are different ways to acquire such an im-
age. This can be done using a standard camera and spe-
cialized hardware like motorized spherical panorama heads
(e.g. [18, 16, 19, 23, 1]) and dedicated automatic software
(e.g. [22,4]), or more conveniently by using complete hard-
ware/software packages that automatize all the steps, like
Weiss AG’s Civetta Camera [29] or SpheronVR’s Sphero-
Cam [24]. Note that these systems necessite a precise cali-
bration, but we do not focus on this calibration in this paper.
Instead, we consider calibrated cameras, and can therefore
assume that the image surface is a unit sphere. Interestingly,
this representation is valid for all types of cameras where
all reflected rays interesect at a single point, known as cen-

tral panoramic cameras [27]. Thus our model is valid for a
wide class of omnidirectional camera, once the calibration
parameters are known.

In this paper, we focus on full-spherical panoramic im-
ages in the context of Structure From Motion (SFM), i.e.
we use spherical cameras to obtain a sparse reconstruction
of a 3D scene, together with the pose of the cameras. While
SFM has been thoroughly studied for perspective cameras
(see e.g. [11]) and omnidirectional hemispherical cameras
([15, 26]), little attention has been given to fully spherical
cameras. In [28], Torii et al. describe geometric aspects of
two- and three- view geometry for spherical cameras. Our
work extends this study by describing further algorithms
required for SFM in spherical cameras. In addition, we
present a novel error measure for spherical cameras that is
suited for the complete class of calibrated central cameras.

1.1. Related work

The bases of epipolar geometry for different kind of cam-
eras have been studied for example in [30]. In [21], the
authors show that image data normalization to unit vectors
is necessary for omnidirectional epipolar geometry. Simi-
larly, Kanatani suggests using unit /N-vectors as pixels in
[12]. Evaluation of error functions for epipolar geometry
has been addressed in [5] for perspective cameras. For
spherical images, [8, 9] presents three types of reprojection
errors for epipolar geometry, but all of them are based on
rectification of the images to bring the epipoles to a canonic
position, operation that can be quite costly.

Structure from Motion has been studied before for hemi-
spherical cameras by different authors [6, 26] but usually
the pose estimation problem is not addressed. Epipolar ge-
ometry is solved using the algebraic error. In [14], Micusik
proposed a calibration procedure for omnidirectional cam-
eras that uses the epipolar geometry. The case of fully
panoramic spherical cameras has only been partially ad-
dressed by [28], where the basic equations for complete
spheres are presented. This work has been extended in
[?, ?], where a complete SFM pipeline for dense image sets
is presented. [13] proposes to compute Structure from Mo-



Figure 1. Local camera coordinate system

tion for spherical panoramas by projecting the spherical im-
age onto a panoramic cube, thus casting the spherical prob-
lem to a set of perspective cameras. In contrast, we propose
Structure from Motion algorithms that use directly spherical
images and spherical coordinates, and derive adapted error
functions.

In this paper, we focus on the study of different errors ap-
proximations for the computation of the epipolar geometry
and the pose estimation of calibrated spherical cameras.

The remainder of this paper is organized as follows: sec-
tion 2 presents our model for a spherical camera, derives the
main algorithms used in Structure from Motion for spheri-
cal images and presents the different types of errors we pro-
pose to study. Section 3 analyzes the proposed error func-
tions in synthetic experiments and section 4 presents results
of our algorithm using real images.

2. Spherical camera definition and algorithms
2.1. Definition

In this section, we define the spherical camera model
that we use in this paper. We consider the central projec-
tion of points in space onto a spherical imaging surface as
showed in figure 1. The camera is defined by its center C
and by a local Euclidean coordinates system. A 3D point
M defined by its Cartesian coordinates M in the coor-
dinate system of the camera is projected onto the sphere’s
surface by the central projection centered on C to the point
m = M¢/ ||[Mc¢||. Thus the image points on the sphere are
unit 3-dimensional vectors, in the spirit of the N-vectors in
[12]. Note that there is no ambiguity about antipodal points:
although the ray passing through the center C and the point
M crosses the sphere at two antipodal points, the image
is uniquely defined by the fact that m and M must have
the same direction, i.e. m™M¢ is positive. In addition to
its Cartesian coordinate system, the spherical camera has
a spherical coordinates system. The spherical coordinates
(r,0, ¢) are related to the Cartesian coordinates (X,Y, Z)
by
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Figure 2. Example of full-panoramic spherical image.

Because the camera is a full panorama, we should ide-
ally have a color information for any value of (6, ¢) in
(0,27) x (0, ). In practice, this information is stored in a
high resolution environment map image, using the latitude-
longitude projection, and we use pixel interpolation to get
color values for floating (0, ¢) values. Figure 2 shows an
example of a full panoramic spherical image.

We assume the existence of a global coordinate system
(the world coordinate system), in which the camera pose
(position and orientation) can be defined. If a point M has
the Cartesian coordinates My in the world coordinate sys-
tem and M in the camera coordinate system, then the pose
of the camera is defined by the rotation R and the transla-
tion t such that:

M¢c =RMy +t ey

2.2. SFM algorithms for a full panorama

In this section, we derive the basis algorithms used in
the Structure from Motion pipeline for spherical cameras.
The main idea is to compute the relative pose between two
first cameras using point correspondence and epipolar ge-
ometry, then triangulate all matched points to get 3D co-
ordinates (first structure). After this initialization, for each
remaining spherical camera, we successively perform fol-
lowing steps: (1) add one new camera in the set, (2) get
2D-3D correspondences from the matches with already tri-
angulated points, (3) compute the pose of the new camera
using 2D-3D correspondences and (4) triangulate all possi-
ble points from matches between calibrated cameras. After
each new camera is added, we use a bundle adjustment step
to refine the pose and the structure. For all optimizations
in the pipeline, we use a novel error measure that we will
detail in the next section.

2.2.1 Point matching for spherical cameras

The algorithms used in SFM require point correspondences
between two views as an input. In order to find ro-
bust matches despite non-linear transformation beween two
views, we adopt a matching-by-synthesis approach in the



Figure 3. Epipolar geometry for spherical cameras.

spirit of the ASIFT method [17]. Note that because this
method uses a local projection model, we can assume a
gaussian noise distribution in the angular description of the
point.

2.2.2 Relative pose problem

The epipolar geometry of two spherical camera is described
in [28]. For completeness, we recall it breifly here. Let C;
and C, be the center of two spherical cameras. Wihtout
loss of generality, we can assume that the coordinate sys-
tem of the first camera is the world coordinate system, i.e.
C; =0, and R and t define the position and orientation of
the second camera. A point M is projected in m; and my
in the first and second camera respectively (see Figure 3).
Ideally, the points M, m;, C;, ms and Cs lie on the same
plane — the epipolar plane — and this can be expressed by
stating that the vectors my, Rm; and t are coplanar. This
is expressed using the epipolar constraint

miEm; =0, E=[t], R )

where ], is a skew-symmetric matrix expressing the cross-
product operation. It is well known that the matrix E can be
computed linarly using eight pairs of correspondences. Be-
cause equation 2 uses coplanarity constraints only without
considering the orientation of the rays, the factorization of
E into R and t generally has 4 solutions [1|]. In perspec-
tive cameras, the correct solution is found by stating that
the depths (z-value) of the 3D points must be positive. For
spherical cameras, the same constraint applies, but the pos-
itivity of the depth must be verified using the sign of the dot
product m™ M.

Geometrical interpretation. If we look at the geomet-
rical aspects of equation 2, we can consider that the vector
n = [t], Rm; is the normal of the plane defined by the
vectors t and Rm; (see Figure 4). Equation 2 can be refor-
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Figure 4. Geometrical interpretation of the epipolar error.

mulated m3n = 0, wich expresses the fact that my should
be prependicular to n. In presence of noise however, this is
not exactly the case. If we call m), the noisy measurement
of my, then m;"n is the cosine of the angle between m)
and n, or equivalently the sine of the angular error ¢, be-
tween the plane and the image point. We therefore use the
angular error for the epipolar constraint [?]:

¢, = sin" ' (m3Em,) 3)

€4 is the error we will consider for SFM, in particular for
non linear optimization algorithms. e stands for epipolar er-
ror, and g for geodesic, as the angular error is equivalent to
the geodesic distance between the plane and the point on the
surface of the sphere. Note that the formulation is valid if
mj, my and n are unit vectors, i.e. if E is parametrized us-
ing a unit length for the vector t. The advantage of this error
is that it is defined on the sphere surface (or equivalently in
terms of angular error) instead of on an image plane. Angu-
lar errors are mor generic than epipolar distance, because it
can be applied for any central camera independantly of the
projection geometry, and avoids the computation of epipolar
curves (line for perspective cameras, great circles for spher-
ical images) in the images.

Note on normalization. In the perspective case, it is rec-
ommended to normalize the point coordinates to improve
stability. This normalization is known as conditioning [11],
where the points are transformed such that the mean is at
origin and their average norm is /2. For spherical images
however, this step is not necessary, as all the points have
unit length, and are usually spread around the center of the
camera.

Symmetry in error measures. When measuring the er-
ror in image space, the residuals are usually made symmet-
ric by adding the distances in both images. For example, the
symmetric squared geometric error in perspective images is
defined by:

(mfEm, )

[Em,]; + [Em, ]

(mJEm, ) @
[ETm,)} + [ETm,];’

where [.], denotes the ith element of a vector. In our case,
the error €, has been defined using image 2, but the com-
puted value would be the same in image 1. Indeed, the
value computed in equation 2 does not change if a global



Figure 5. Geometrical interpretation of the reprojection error.

rotation of all vectors by R~ is applied. By virtue of the
triple product, we then have:

m; [t], Rm; = (R"7'my)" [R7't], m,
=m7 [-R't], R"'my,

which is the expression of the error in the first image.

2.2.3 Pose problem

The pose problem — or Perspective-n-point (PnP) problem
— can be defined as the problem of finding a camera’s posi-
tion and orientation from 2D-3D correspondences. We as-
sume that a number of points with known (world) 3D co-
ordinates My can be identified in an image as 2D point
m, and the task of the PnP problem is to find the transfor-
mation parameters R and t that minimize the reprojection
error. Different solutions to this problem have been pro-
posed [20], and for the spherical camera, we use the Direct
Linear Transform (DLT) [2] as first estimate of the pose,
followed by non-linear refinement with a novel error mea-
sure. DLT states that the image point m is collinear to the
3D point in the camera coordinate system, so that the cross
product between m and RMy + t is zero. Writing this
cross product delivers three equations in the elements of
R and t, among which two only are linearly independent.
Six identified points are therefore necessary to solve for the
pose. After the pose has been computed, the orthogonality
of R can be enforced using SVD.

Geometrical interpretation of the reprojection error.
The linear method described so far delivers only a first es-
timate of the pose of the camera. This step should be
followed by a non-linear least-squares optimization of the
pose. Here again, we define the geodesic reprojection er-
ror as the angular error between the point m and the repro-
jection of the point M on the sphere (see Figure 5). The
geodesic error is defined by [?]:

_1;,m™
ag =cos M| ) ®)
g is suited for spherical images and for calibrated central
cameras and can be used in non linear optimization as well
as for distance computation in thresholded outlier rejection
schemes.

tangential plane a, tangential plane

Figure 6. Tangential approximations of the errors.

2.3. Error approximations

So far we have presented the basic building blocks
needed in Structure from Motion in full panoramic spher-
ical images. We have derived two exact geodesic error for-
mulations for the relative pose problem and the perspective-
n-point problem. These errors require however the compu-
tation of inverse trigonometric function for each correspon-
dence. In the case of high-resolution spherical images, we
usually get around 7.000 correspondences for an image pair,
and the computational cost can be critical. We therefore in-
troduce different approximations of these errors (see Figure
6).

Distance of ray to epipolar plane The sine of the
geodesic distance is the perpendicular distance from the
epipolar plane to the image point my. So taking the ab-
solute value of the algebraic distance defined in equation 2
amounts to approximating the geodesic distance by the per-
pendicular projection distance. This is valid if image points
are unit vectors, so we define the projected distance ¢, as:

T
& = m3Em, | (6)
[y | [ Emy |
The left part of Figure 6 shows the distance ¢, for a quite
big angle ¢, for visualization purposes, but in practice the
angle is much smaller, so that the local projection is a good
approximation of the error.

Tangential error for epipolar distance. For the com-
putation of the error in the epipolar distance, we project the
geodesic error €4 locally on a plane tangent to the sphere on
the point my. The resulting error is ¢, = tan(e,), which
turns out to have the mathematical form:

6 = —P ()
W1 — 6%

Because we usually compute the square of that error, the
overall computational cost amounts to one squaring, one
subtraction and one division.



Tangential error for reprojection distance. When re-
projecting a 3D point on the sphere surface, we end up with
two points on the sphere. In this case, we consider the tan-
gential plane tangent on a point that lies exactly between the
image point and the reprojection of the 3D point (see Figure
6, right). The resulting error is oy = 2tan(agy/2), that is:

®)

Here again, the computational load is kept small, as only
one addition, one subtraction and one division is required to
compute the square of the error.

In the next section, we evaluate the errors defined above
in synthetic experiments.

3. Minimization using error approximations

So far we have derived the errors for full panoramic
spherical images, and proposed new approximations for
these errors. We now evaluate the validity of these approxi-
mations in different experiments.

3.1. Choice of the epipolar distance

In a first experiment, we tested several epipolar dis-
tances in a synthetic scenario. Given two spherical images
with known positions, we randomly generated n 3D points
around the two cameras. The 3D points are then projected
in the images to get the coordinates of the 2D points. We
assume a perfect matching of points, so each 3D point leads
to a pair of corresponding points in the images. We then
add a given amount of noise in the spherical coordinates
by adding a small value 7 to ¢ and 6 sampled from a uni-
form distribution in —o, +0. We then compute the epipolar
matrix E using the 8 point algorithm. This first estimate is
then optimized by a Levenberg—Marquardt error minimiza-
tion. We compare the results obtained for different error
measures in the optimization step: the geodesic distance ¢,
of equation 3, the perpendicular projection €, of equation
6, the tangential distance €; of equation 7, and the Samp-
son distance usually recommended [! ] for optimizing the
epipolar geometry in perspective images:

(m3Em;)*

€s —

)
[Emlﬁ + [Em1]§ + [Engﬁ + [Eng]g

with [.], defined as in equation 4. After convergence, we
measure the geodesic distance ¢, between the correspond-
ing points. We repeat this experiment 7" times and plot the
mean error for different values of o. Figure 7 shows the re-
sults for a number of points n=200, 7'=1000, and different
values of o varying between 0.1 and 2 degrees.
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Figure 7. Residual error after optimization of the epipolar matrix

The result show that the 8 point algorithm alone is not
sufficient to compute a reliable epipolar matrix. When min-
imizing the reprojection error, our experiment show that the
Sampson distance is not adequate for the spherical geome-
try, as it is constantly the worse result. A possible reason
is that the Sampson distance is a first order approximation
of the geometric distance in the case of perspective cam-
eras, i.e. the error that is actually minimized is measured in
the image plane. The results also show that the tangential
distance ¢, is less good than the geodesic distance € . Sur-
prisingly, the perpendicular distance to the epipolar plane ¢,
seems to provide better results than the minimization using
the geodesic distance. This is probably due to better con-
vergence properties with this distance. We therefore recom-
mend using ¢, as distance to minimize for spherical cam-
eras.

3.2. Choice of the point to point distance

We now conduct a similar experiment for comparing dis-
tances in the computation of the pose from 2D-3D corre-
spondences. Similarly, we randomly generate n 3D points
around one spherical image with known position. The 3D
points are then projected into the image to get the coordi-
nates of the 2D points, to which we and add a given amount
of noise as in the previous experiment. We then compute
the pose of the camera with the DLT algorithm, and opti-
mize this result by a Levenberg—Marquardt error minimiza-
tion. The error measures we compare are the following: the
geodesic distance «y; of equation 5, the tangential distance
a4 of equation 8, and the Euclidean distance between the
2D point m and the projection of the 3D point M:

M
. = - 10
° Hm ||M||H (10

After convergence, we measure the geodesic distance



—-DLT

-=-alpha_t

~ o ©
—_—

alpha_g

o

—alpha_e

[0}

\

geodesic distance (degree)

[N}

0 1 2 3 4 5 6
sigma (degree)

Figure 8. Residual error after optimization of camera pose

o4 between the 2D point and the reprojection of the cor-
responding 3D point. We repeat this experiment 7" times
and plot the mean error for different values of 0. Figure
8 shows the results for a number of points n=200, T'=1000,
and different values of o varying between 0.1 and 6 degrees.

The result show that the DLT algorithm is stable until
a value of 0 = 1.5 degrees, then rapidly diverges and is
not reliable anymore. However, the different minimization
strategies recover a correct pose from the erroneous DLT
result. If we compare the result of optimization using dif-
ferent distances, we see that using the euclidean distance
between points «, provides poor results for large values of
o. Using the geodesic distance oy produces better results,
but the tangential distance a; constantly provides the best
convergence in the optimization. Here again, a possible ex-
planation is that this distance is more suited for finding the
global optimum. We therefore recommend using o as dis-
tance to minimize when solving the PnP problem in spheri-
cal cameras.

4. 3D Reconstruction with spherical cameras

In order to illustrate the use of our structure from motion
algorithms for full spherical panoramic cameras, we now
present results obtained with images of an urban environ-
ment.

4.1. Structure from motion pipeline

We follow a classical approach for the SFM pipeline: we
start by detecting salient points in all the images using the
spherical variant of ASIFT described in section 2.2.1. For
the matching process, we can automatically compute the
matches for all pairs of cameras, or for a subset of pairs
using user-provided prior information on neighborhood be-
tween cameras. We then choose two cameras as initial cam-
eras, and solve the epipolar geometry for this pair. This is

done in two steps: first the epipolar matrix E is computed
linearly using the eight-point algorithm that minimizes the
algebraic error of equation 2. Outliers are rejected using
RANSAC [7] and the perpendicular error ¢, as defined in
equation 6. We then factorize the matrix E in R and t
and set a unit length for the translation vector. This allows
for a parametrization of E using 5 parameters. Using this
parametrization, we optimize the epipolar error using €, in
the Levenberg—Marquardt optimization algorithm. When
the optimal pose is found, we can triangulate the correspon-
dences to find the 3D position of the points.

After this initialization, we successively perform follow-
ing steps: (1) Among the non-calibrated cameras, select
the one that shares the most matches with already cali-
brated cameras. (2) get 2D-3D correspondences from the
matches with already triangulated points. (3) compute a
first estimate of the pose of the new camera linearly using
the DLT algorithm, using o as defined in equation 8 for
RANSAC—based outlier rejection. (4) optimize this pose
using oy in the Levenberg—Marquardt optimization algo-
rithm. (4) triangulate all possible points from matches be-
tween calibrated cameras. (5) Apply a sparse bundle ad-
justment technique that globally minimizes the reprojection
error for all already calibrated cameras and all 3D points.

The novelty of our approach resides in the usage of
full panoramic spherical cameras together with SFM tech-
niques, and in the usage of novel error formulations for the
optimization steps.

The advantage of using a full panoramic spherical cam-
era is that they have the ability to see extremely large parts
of the surroundings, as noted by [15] and [25].

4.2. Results

We tested our methods in a real scenario by acquiring 35
spherical images of a urban environment. The acquisition
time for 35 images is approximately one hour. We find ap-
proximately 50.000 affine SIFT points on each image. After
pairwise matching, we find up to 7000 matches for each im-
age pair. Figure 9 top (left and right) shows the distribution
of the 38.287 3D points found after the SFM step, as well
as the position of the cameras on the floor.

Once all cameras are calibrated and a coarse structure
has been found, we compute a dense reconstruction based
on a Multiple View Stereo (MVS) method of Furukawa and
Ponce [10]. This method was originally formulated to gen-
erate dense point clouds for calibrated perspective images,
and we adapted it for spherical views. The resulting point
cloud contains over 50 millions points. Figure 9 bottom
shows several views of the reconstructed point cloud. Note
that the output of our algorithm is a dense point cloud, not a
surface. However, in many regions, the density of the points
is such that the point cloud appears as a continuous surface.

The quality that we obtain for the dense point cloud as-



Figure 9. 3D reconstruction of a city place. Top: results of the structure from motion method. Middle and bottom: Dense point cloud
generated using multiple view stereo with the calibrated cameras as input.

sesses the precision of the calibration step we propose in visualized in a video provided as supplementary material.
Structure from Motion. The resulting reconstruction can be



5. Conclusion

In this paper, we presented different algorithms for
Structure from Motion estimation from full panoramic
spherical images. After the derivation of the solutions to
the pose problem and the relative pose problem, we showed
what are the exact geodesic errors to consider in these solu-
tions, and proposed several approximations of these errors.
We showed that the perpendicular distance to the epipolar
plane is the best error for epipolar geometry and that our
novel tangential error for the point-to-point distance is the
best one for solving the PnP problem (pose from 2D-3D
correspondences). We validated these results in a practical
scenarios where we reconstructed a large scene in an urban
environment using spherical images.
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