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Abstract. General object tracking is a challenging problem, where each
tracking algorithm performs well on different sequences. This is because
each of them has different strengths and weaknesses. We show that this
fact can be utilized to create a fusion approach that clearly outperforms
the best tracking algorithms in tracking performance. Thanks to dy-
namic programming based trajectory optimization we cannot only out-
perform tracking algorithms in accuracy but also in other important
aspects like trajectory continuity and smoothness. Our fusion approach
is very generic as it only requires frame-based tracking results in form
of the object’s bounding box as input and thus can work with arbitrary
tracking algorithms. It is also suited for live tracking. We evaluated our
approach using 29 different algorithms on 51 sequences and show the su-
periority of our approach compared to state-of-the-art tracking methods.
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1 Introduction

Visual object tracking is an important problem in computer vision, which has
a wide range of applications such as surveillance, human computer interaction
and interactive video production. Nowadays, the problem can be robustly solved
for many specific scenarios like car tracking [18] or person tracking [2, 27]. How-
ever, object tracking in the general case i.e. when arbitrary objects in arbitrary
scenarios shall be tracked can still be considered as widely unsolved. The pos-
sible challenges that can occur in an unknown scenario are too various and too
numerous to consider them all with reasonable effort within one approach – at
least with todays capabilities. Classical challenges are for example illumination
changes, shadows, translucent/opaque and complete occlusions, 2D/3D rota-
tions, deformations, scale changes, low resolution, fast motion, blur, confusing
background and similar objects in the scene.

As the evaluation in [29] and our comparison in Table 1 shows, each tracking
algorithm performs well on different sequences. An on average good algorithm
might fail for a sequence where an on average bad algorithm performs very well.
For example in Table 1 the on average best algorithm SCM [35] fails in the
lemming sequence, while the on average second worst algorithm SMS [8] outper-
forms every other algorithm on this sequence. This shows that different tracking
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algorithms master different challenges that can occur in general object tracking
and that an approach which combines the strengths of different algorithms while
avoiding their weaknesses could outperform each single algorithm by far.

A possibility for this combination is the fusion of the tracking results of dif-
ferent algorithms into one result. In this paper we show that we can actually
clearly outperform single algorithms with this approach. Furthermore, we show
that our fusion approach can generate good results for many more sequences
than the globally best tracking algorithm. Moreover, our fusion approach of-
ten outperforms even the best tracking algorithm on a sequence by up to 12%
in success score in our tests. Thanks to trajectory optimization our fusion re-
sult is also continuous and smooth as expected from standard tracking algo-
rithms – we even outperform tracking algorithms in this regard. For the best
results trajectory optimization has to run offline, but we can also obtain very
good results with pure online fusion. Online means that only tracking results
of the current and past frames can be considered to create the fusion result
for the current frame. This makes it suitable for live tracking. In offline fu-
sion the tracking result for a whole sequence is known beforehand. Moreover,
we present a short runtime evaluation and we show the robustness of our ap-
proach towards bad tracking results. Our approach is very generic and can
fuse arbitrary tracking results. As input it needs only tracking results in the
form of rectangular boxes.3 A library to test our approach can be found here:
http://www.dfki.de/web/forschung/publikationen?pubid=7456.

2 Related Work

In this section we give a general overview of fusion approaches for object tracking.
For an overview of common object tracking algorithms we refer to recent state
of the art review articles [32, 6] and general tracker evaluation articles [29, 30].

Fusion of tracking algorithms can be performed actively with feedback to the
tracking algorithms or passively without feedback. As tracking algorithms are
usually not designed to receive feedback and to be corrected active fusion requires
specific tracking methods that work hand in hand with the fusion approach. One
such approach is PROST [25] which combines optical flow tracking, template
tracking and a tracking by detection algorithm in a very specific way. Thus,
the three component algorithms can only be replaced very similar methods.
Further active fusion approaches are VTD [19] and VTS [20]. These also require
special tracking algorithms which fit into the proposed probability model and the
tracking algorithms need to be defined by an appropriate appearance and motion
model to be compatible with their approach. It is also possible to integrate
common tracking algorithms into an active model. However, active fusion with
many tracking algorithms is extremely complex as the fusion approach has to
consider the specifics of each algorithm. Furthermore, feedback in the form of
position correction is problematic as it forces tracking algorithms to follow one
truth that might be incorrect and thus leads to permanent tracking failure.

3 However, optional labeled training data can improve the results of our approach.
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In contrast, passive approaches work with arbitrary tracking algorithms as
long as these provide outputs that are compatible with the fusion approach.
To our knowledge, the only existing passive approach is part of our previous
work [4]. In this work the aim was to create a user guided tracking framework
that produces high quality tracking results with as little user input as possible.
The framework allows the user to select the object in different frames and to
track the sequence with several different tracking algorithms. One feature to
keep the effort small was a fusion approach that allows the user to check one
fused result instead of several tracking results. In the fusion part of [4], we first
search the biggest group of tracking result boxes that have all an overlap above a
threshold to each other and then we average these boxes. If there are two groups
with the same size we prefer the group with the greater overlap to each other.

3 Fusion of Tracking Results

In this section we describe our fusion approach. The input for our approach are
M tracking results Tj , j ∈ [1...M ] for an object in a sequence. Each tracking
result consist out of N bounding boxes bi,j , i ∈ [1...N ] – one for each frame i in
the sequence. For online/live tracking N is incremented for each new frame. Each
tracking result Tj is considered to be created by a different tracking algorithm j.
The fusion result of our approach that we call T ∗ also consists of one rectangular
box for each frame. Our fusion approach works online, but some parts provide
a better performing offline version as well (if mentioned).

3.1 The Basic Approach

A common approach in data fusion is majority voting. Our previous work [4] is
also based on this idea. However, in tracking this requires a threshold parameter
that defines if two result boxes vote for the same position. In our experiments,
such thresholds showed to be very sequence dependent. Instead our approach is
based on the idea of attraction fields, which does not need thresholds. The closer
a fusion candidate is to a tracking result box the stronger it is attracted by it.
The sum of attractions for all tracking results can be seen as an energy function
that we want to maximize to find the fusion result. Attraction is computed in a
4 dimensional space to consider not only the object position but also the object
size. The 4 dimensions are the x and y position of the box center and the box’s
width w and height h. The distance d between two boxes b and c is computed
as:

d(b, c) =
∥∥∥(dx(b, c), dy(b, c), dw(b, c), dh(b, c))

T
∥∥∥
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α is a constant which determines the influence of scale to the distance. It has
no influence if the two boxes have the same size. The attraction function (or
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energy) for a candidate box c in a frame i defined as:

ai(c) =
∑
j∈M

1

d(bi,j , c)2 + σ
(3)

σ is a constant that not only avoids infinite attraction for a zero distance, but
also reduces attraction increase close to zero. This prevents a perfect match to
a box bi,j from getting a higher overall attraction than a position with good
agreement to many close-by boxes. Thus, a well chosen σ is useful for noise
reduction. In order to find the fusion result box c∗i ∈ T ∗ that gets the greatest
attraction for a frame i we first test all tracking result boxes Ri := {bi,1...bi,M}
for how much attraction they get and keep the one with the greatest attraction.
Then we perform gradient ascent starting from that box to determine c∗i .

3.2 Tracker Weights

Different tracking algorithms perform on average different well and it is reason-
able to trust algorithms more if they perform on average better. We can consider
this by adding weights to tracking algorithms, if ground truth labeling for some
sequences is available to determine the weights. If we call Gi

s the ground truth
labeling for a sequence s at frame i, the weight wj for a tracking algorithm j is
determined as:

wj =
∑
s∈S

∑
i∈N

1

d(Gs
i , b

s
i,j)

2 + σ
(4)

S is the set of all sequences from which we determine weights. Normalization is
not necessary as long as all wj are determined on the same frames of the same
sequences. The weighted attraction function is then:

awi (c) =
∑
j∈M

wj
2

d(bi,j , c)2 + σ
(5)

3.3 Trajectory Optimization

The current approach is computed on a frame by frame basis and thus ignores
possible discontinuities in the tracking trajectory. As the correct trajectory likely
does not have such discontinuities it is desirable to avoid them and to find a
continuous trajectory. To this aim we define the energy function ET for the
whole trajectory T as an extension of the frame-based energy of Equation (5):

ET =
∑
i∈N

awi (ci) + βp(ci−1, ci), ci ∈ Ri := {bi,1...bi,M}, T := {c1...cN} (6)

where ci is the fusion candidate box for a frame i on the trajectory candidate
T . β weights the importance of continuity versus the best local score. Trajec-
tory optimization cannot determine energies for boxes which do not belong to a
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tracking result. Thus for a valid trajectory T , the boxes ci ∈ T must be chosen
from the set of tracking result boxes Ri. awi is the normalized attraction that
can, like awi , be defined for single frames as:

awi (c) =
awi (c)

max
bi,j∈Ri

awi (bi,j)
, Ri := {bi,1...bi,M} (7)

The normalization ensures that the algorithm considers each frame with the same
attention and does not favor simple frames with a concentration of attraction.
If weights are not available awi can also be replaced by the corresponding ai by
using ai (Equation 3) instead of awi . The function p is a function designed in
order to penalize tracking result switches in a frame. It is 1 in frames where the
trajectory T keeps following one tracking result Tj and close to 1 if the tracking
result which T follows is changed but the trajectories of the old and new results
are very close to each other in the corresponding frame. For discontinuities i.e.
a leap to a distant trajectory it is close to zero. The function is defined as:

p(ci−1, ci) =
σ

d(c×i , ci)
2 + σ

, ci−1 = bi−1,j ⇔ c×i = bi,j (8)

c×i is the bounding box following ci−1 in the tracking result Tj where ci−1 is
originating from, while ci can belong to another tracking result on a tracking
result switch in the frame. We do not use any motion model like e.g. a Kalman
filter in p as we expect from the tracking algorithms themselves already to have
motion models i.e. by choosing an algorithm we indirectly also choose a motion
model. Instead we determine the cost of switching the tracking algorithm in a
frame with our normalized distance d between the trajectories of two algorithms.
To find the trajectory T ∗ that maximizes ET within a reasonable time we use a
dynamic programing based approach with N ×M energy fields determined as:

E(0, j) = awi (b0,j) (9)

E(i, j) = awi (bi,j) + max
j2∈M

p(bi−1,j2 , bi,j) + E(i− 1, j2) (10)

Energy fields have to be calculated in increasing frame order starting with frame
0. All costs fields for a frame can be calculated in parallel. For online trajectory
optimization T ∗ consists of the boxes with the highest energy in each frame.
For the offline version the last frame is determined in the same way. The full
offline trajectory of T ∗ can then be found by replacing “max” with “arg max” in
Equation (10) to calculate W (f, i). W (f, i) can then be used as a lookup table
for the way back on T ∗ starting from the last frame.

After finding the best trajectory, gradient ascent as described in Section 3.1
is performed here es well with Equation (5). We limit the maximal descent
distance as we only want to use it for noise removal and not to destroy our
found trajectory. The descent is limited to:

maxDescent = δ
bw + bh

2
(11)

with bw and bh being the width and height of a box ci ∈ T ∗ and δ = 0.05.
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3.4 Tracking Algorithm Removal

It might be advantageous to remove bad tracking results before fusion as they
may disturb the fusion process more than they support it. In this section we
present two removal approaches. A local one which removes different tracking
algorithms for each sequence independently and a global one that removes track-
ing algorithms for all sequences at once.

The Local Approach: The idea behind the local approach is that there are only a
few good tracking results for each sequence and we can identify them by looking
at the average attraction a tracking result gets in a sequence. To this aim we
calculate the performance Pj for each tracking result j in a sequence:

Pj =
∑
i∈N

awi (bi,j) (12)

Then we exclude the γ worst results with the smallest value Pj from the fusion.
γ is a global parameter which is set equally for all sequences. γ = |T | − 1 is
a special case which forces our approach to pick a single best tracking result
for a sequence. Local removal can be used offline as well as online. In the online
version all Pj must be recalculated every frame as N grows with each new frame.

The Global Approach: The global removal approach has the advantage that algo-
rithms are removed permanently i.e. we do not need them for tracking anymore.
To find candidates for global removal we first divide a training dataset into 10
parts of similar number of sequences and then perform experiments with all 10
permutations of 9 different parts, each. First we calculate for each experiment
the success rate (see Section 4). Then we test for each experiment the removal
of single tracking algorithms starting with the algorithm with the smallest wj

and proceeding in increasing order. If the success rate raises through removal of
an algorithm, it will stay removed. Otherwise it will be added again. Algorithms
that are removed in at least 7 experiments will be removed permanently. The
reason why we do not simply use only the full training set to determine removal
is that the removal procedure is extremely instable. For many algorithms the
exchange of one or very few sequences already makes a big difference. Only if
we perform several experiments we can identify algorithms that can be removed
safely. Global removal is compatible with all online and offline fusion approaches,
but requires in contrast to local removal labeled training data.

4 Evaluation Data and Methodology

To evaluate our fusion approach we use tracking results and ground truth data
provided by Wu et al. [30]. They provide tracking results for 29 different online
tracking algorithms on 51 different sequences with 32 different initializations on
each sequence which are in total 47,328 tracking results. 20 initializations are
used for “temporal robustness initialization” (TRE) of the tracking algorithms.
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This means that the tracking algorithms are not only initialized in the first frame
of each sequence but at 20 different temporal positions in each sequence. The first
initialization of TRE starts from the first frame, which is the classical approach
in object tracking. It is used for “one-pass evaluation” (OPE). The other 12
initializations they used for “spatial robustness evaluation” (SRE). This means
that the initial tracking box is compared to the ground truth either scaled (scale
factors: 0.8, 0.9, 1.1, 1.2), shifted (left, right, up and downwards shift) or shifted
and scaled by the factor 1.1 at the same time. Nevertheless, SRE is evaluated
with the unmodified ground truth. The authors argue that SRE is interesting
because tracking initialization may be performed by an object detector that is
not as accurate as a human initialization. In their work, Wu et al. [30] utilized
OPE, TRE and SRE as independent datasets for a detailed evaluation of all 29
tracking algorithms. To take advantage of their whole data we will evaluate our
fusion approaches also on these datasets. To our knowledge, there are only very
few offline tracking algorithms in single object tracking. As a result, the best
performing algorithms are usually almost all online. Therefore, we use these
datasets created by online algorithms also to evaluate our offline approaches.

Evaluation Methodologies: For comparability we also use the same evaluation
methodologies: a precision and a success plot. Precision measures the center
location error in pixel space between the tracking box and the ground truth data.
It is used already for a long time for evaluation in object tracking, but has some
drawbacks. First of all, it does not normalize for object pixel size. A negligible
center location error for a big object in a high resolution sequence can mean
tracking failure for a small object. Secondly, the error can still increase if the
object is already lost. Furthermore, it does not consider whether the object size
is determined correctly. By using a precision plot which thresholds precision (it
shows the percentage of frames that are below an error threshold) the problem
of increasing error on object loss can be reduced but not completely solved.
Anyhow, we think it is sufficient to compare location accuracy without scale
accuracy for the provided dataset as the variability of object sizes stays within
an acceptable limit. A measure that does not suffer from these problems is success
which measures the overlap between a tracking and a ground truth box:

O(a, b) =
|a ∩ b|
|a ∪ b|

(13)

The overlap is the intersection divided by the union of the two box regions.
Overlap is normalized for object pixel size, penalizes if the size of a tracking box
is different to the ground truth and the error will not increase if the object is lost.
The successes plot measures the percentage of frames that have an overlap above
a threshold. We call the area under curve (AUC) of the success plot success score.
The success score is at the same time also the average overlap over all frames.
To make sure that tracking result fusion is performed without influence from its
ground truth data we determine the weights wj and global algorithm removal in a
cross validation manner, where we optimize for success score. The parameters α,
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β and σ we set to 4, 20 and 0.03, respectively, for all our tests. These parameters
showed to be very robust i.e. the best values for them are very similar for OPE,
TRE and SRE and our approach still shows a similar performance if we vary
the values of these parameters in a relativity big range (supplemental material
Fig.3). In our tests γ showed to be less robust and dataset dependent. To still
prove its usefulness we optimize it for each dataset with cross validation. For
SRE we use OPE to find γ, the weights wj and to perform global algorithm
removal. This simulates the effect of good training data but bad initializations
from an object detector on real data. Cross validation is applied here as well.

5 Results

In this section we present and discuss the evaluation results for our fusion ap-
proach. Further results and details can be found in our supplemental material.
Success and precision plots can be seen in Figure 1 for OPE and Figure 2 for
SRE and TRE. These plots contain different curves:

– The five best and two worst tracking algorithms according to [30].4

– The average of the curves of all 29 tracking algorithms.
– The fusion result of our previous work [4].
– Fusion results for our basic approach (Section 3.1), weighted approach (Sec-

tion 3.2), trajectory optimization approach (Section 3.3) and for local and
global removal (Section 3.4) based on our trajectory optimization approach
for fusion. Due to space constraints we only show the offline versions of
trajectory optimization and local removal as they provide slightly better re-
sults than the online versions and as they are sufficient for many practical
applications.

– The “Best algorithm for each sequence” curve. It is determined by choosing
always the best performing tracking algorithm for each sequence according
to the success score. Note that this curve is not attainable without knowing
the ground truth, and is only given as reference.

– The “Upper bound” curve. It is determined by taking for each frame in each
sequence always the best tracking result box with the biggest overlap to the
ground truth. Here again, this curve is not attainable without knowing the
ground truth, and is only given as reference.

The numbers in brackets in the figures show, similar to [30], the value at
location error threshold = 20 for the precision plot and the success score (AUC)
for the success plot.5 We show results of individual tracking algorithms as dashed
lines in color and results of our fusion approaches as solid lines. Further lines are
doted. Gray lines are not attainable without knowing the ground truth. Getting
close to the “Upper bound” curve is very unrealistic for a fusion approach, as
with a large amount of tracking results it is likely that there are results close to
the ground truth only by chance. Nevertheless, it shows that there is at least a
theoretical potential to get above the “Best algorithm for each sequence” curve.

4 For plots of all 29 tracking algorithms we refer to the supplemental material of [30].
5 Numbers differ slightly from [30] as we calculated them exactly by average overlap.
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Fig. 1. Fusion results of OPE. Best viewed in color. See text for details.

Success and Precision Performance: As can be seen in Figure 1 and 2 our basic
approach clearly outperforms the best tracking algorithm as well as our previ-
ous work [4] in all success and precision plots. Such good results are remarkable,
given the fact that the fusion result is also influenced by many tracking algo-
rithms that perform clearly worse than the best tracking algorithm. In every plot
the weighted approach outperforms the basic approach and the trajectory op-
timization approach again outperforms the weighted approach. Global removal
outperforms trajectory optimization in success score – for what it was optimized.
However, in the success and precession plots the performance varies depending
on the position. The performance for local removal differs for the three datasets.

OPE: On OPE local removal outperforms all other fusion approaches. The curve
for local removal is even close to the “Best algorithm for each sequence” curve.6

For a threshold lower than 5 pixels the curves in the precision plot are even almost
the same. In the success plot which additionally considers scale correctness the
approach does not get that close. This is likely because scale is often not correctly
determined when position is determined correctly. We believe that this happens
because many tracking algorithms are not able to determine the scale and thus
they all vote for the scale of initialization.

SRE: On SRE local removal slightly underperforms the trajectory optimization
approach. As reason we found that surprisingly the best γ for SRE is only 2,
which is probably related to the poor initializations in SRE. However, as we take
γ for SRE from OPE a γ of around 17 is used in cross validation.

TRE: On TRE tracking algorithms are mostly initialized in the middle or at the
end of a sequence, which results in very short tracking results. Because of this,

6 It is not outperformed because of a few sequences where fusion fails. See Table 1.
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Fig. 2. Fusion results of SRE and TRE. Best viewed in color. See text for details.

the difference between the best tracking algorithms and the “Average” tracking
algorithm curve is clearly smaller than on OPE, as good algorithms can take
less advantage from short results. Similarly, the gain for our weighted, trajectory
optimization and local removal approach is smaller. On the other hand, our basic
approach and global removal approach seem not to be negatively affected by the
short sequence effect as there is an advantage similar to OPE. As a result, our
approaches are even very close to the “Best algorithm for each sequence” curve
and even outperform it at some locations. The best γ for TRE is 14.

Performance on Single Sequences: Table 1 shows the performance of our fusion
approach on single sequences of OPE (SRE and TRE in supplemental mate-
rial). Our previous work [4] outperforms the best tracking algorithm only in 3
sequences while already our basic approach outperforms the best tracking algo-
rithm in 11 sequences. The weighted approach, trajectory approach and global
and local removal approaches outperform the best algorithm even in 15, 20, 18
and 22 sequences, respectively. Our previous work [4] has at least 95% of the
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ASLA [16] x x x x x x x
BSBT [28]

CPF [23]
CSK [15] x

CT [33]
CXT [11] x
DFT [26] x x x x x x

Frag [1] x x
IVT [24] x

KMS [10]
L1APG [5] x

LOT [22] x x x
LSK [21] x x
MIL [3]

MS-V [7]
MTT [34] x
OAB [12]

ORIA [31] x
PD-V [7] x
RS-V [7] x

SemiT [13]
SCM [35] x x x x x

SMS [8] x
Struck [14] x x x x x x

TLD [17] x x x
TM-V [7] x
VR-V [9]
VTD [19] x x x x x
VTS [20] x x

prev. work [4] o . . o . . . . . . . o
Basic . . o . o . o . . . . . . o o o . . . o . o o o o

Weighted o o . o . o . o . . . . . o o o o . . . o o . o o o o
Trajectory o o . o . . o o . o . . . . . o o o o o o o . . o o . o o o o o .

Global Removal o o . o . . o o . . . . . . . o o o o o o o . . o o . . o o o o . . .

Local Removal o o . o . . o o . o o . . . o o o o o o o . . o o o o o o o o . . .

Table 1. Comparison of tracking results and fusion results for each sequence of OPE.
The heatmap is normalized so that the best tracking result on a sequence is green.
Red is the worst possible result. Cyan means that the fusion result is up to 12% (full
cyan) better than the best tracking result. “x” marks the best tracking algorithm for a
sequence, “o” fusion results that outperform the best algorithm and “.” fusion results
with at least 95% of the success score of the best algorithm. The heatmap is calculated
by success score (see text for details). Tables for TRE and SRE can be found in our
supplemental material. Best viewed in color.

success score of the best tracking algorithm in 12 sequences, our basic approach
in 25, the weighted approach in 27, the trajectory approach in 33 and the global
and local removal approaches in 35 and 34 sequences, respectively. This shows
that our fusion approaches can provide for most sequences results very close or
even better than the best tracking algorithm. Hereby, we can also clearly out-
perform our previous work [4] and our extended approaches clearly outperform
our basic approach. Furthermore, our approaches often not only outperform the
best tracking algorithm, but they are even up to 12% (18% SRE, 33% TRE)
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Fig. 3. Trajectory continuity evaluation on the OPE dataset. See text for details.

better in success score. However, there are also sequences like skiing and singer2
where fusion performs poorly. The reason is probably that there are few algo-
rithms that clearly outperform all other algorithms (skiing : 1 algorithm, singer2 :
2 algorithms). Fusion cannot deal very well with such situations where very few
algorithms outperform all others. The sequences where fusion performs poorly
are the reason why our approach does not outperform the “Best algorithm for
each sequence” curve in Figure 1.

Continuity and Smoothness of Trajectory: A good tracking trajectory should be
continuous and smooth. Figure 3(a) show the number of frames on all sequences
of OPE where there is a per frame acceleration greater than half of the size of
the object bounding box. This happens even in the ground truth as there are
a few sequences with extreme accelerations (in 0.48% of all frames). However,
high accelerations that are not in the ground truth and thus not in the object
trajectory can be considered as outliers or discontinuities. As expected, the frame
based approaches show many discontinuities in their trajectories. Nevertheless,
our basic and weighted approach perform much better than our previous work [4],
but show still many discontinuities. Our trajectory optimization approach shows
here its greatest strength. Thanks to its ability to consider past frames, online
trajectory optimization performs much better than the other online approaches.
For the offline version the numbers are even very close to the numbers of the
ground truth. Our removal approaches which use offline trajectory optimization
for fusion show similar results. The trajectories of some tracking algorithms like
SCM and CXT also show only a few discontinuities. In contrast, Struck and
VTD have by far too many discontinuities.

This shows that our trajectory optimization approach not only provides a
trajectory continuity, which is similar to that of tracking algorithms, but even
outperforms most of them in this regard. Figure 3(b) shows the average accel-
eration. Our trajectory optimization approaches (online and offline) have here
even a smaller value than the ground truth. This shows that the trajectories of
our trajectory optimization approaches are in general even smoother in velocity
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Fig. 4. a): Processing speed, success score comparison for different tracking algorithms
and fusion selections. b): The performance with removal of the worst or best tracking
algorithms, compared to our global removal approach. All solid non dashed results are
created with our trajectory optimization approach. See text for more details.

than the ground truth. This does not mean that they are better, but we think
error by smoothness is preferable over many other error source.

Processing Speed: A possible drawback of a fusion approach could be its high
runtime as it requires several tracking algorithms to run. As processing speed
for tracking algorithms we take the average frame per second numbers from [30].
Figure 4(a) shows the processing speed of our approach with different subsets
of algorithms. We construct the subsets by selecting algorithms in two different
ways. Starting with one algorithm, we build the next subset by adding the next
best algorithm to the set. The next best algorithm is the one with the greatest

frames per second× success scoreX (14)

that is not yet in the set. We use X = 2 and X = 4 for the two selections,
respectively (See supplemental material for more details). Concerning processing
speed we cannot outperform fast and good tracking algorithms like TLD [17] and
Struck [14] as there are only few faster algorithms in the dataset that mostly
do not perform very well. Perhaps, with more very fast algorithms it might be
possible. However, for a processing speed of ten frames per second or less fusion
clearly outperforms every tracking algorithm.

Removal: Figure 4(b) shows the removal of the best (from right) or worst (from
left) tracking algorithms. We perform this test with our trajectory optimization
approach and with our previous work [4] for comparison. Although, the worst
algorithms perform really poor, fusion only slightly suffers from them and still
benefits from relatively bad algorithms like ORIA [31]. This interesting effect is
true for both fusion approaches. However, our previous work needs a minimal
number of tracking results to get a stable result probably because it uses majority
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voting. It performs worse than the best tracking algorithm SCM [35] when fusing
the best 6 tracking algorithms. To avoid suffering from bad tracking results
global removal can be used. It outperforms the peak of removal from the left.
Removal from the right shows that the best algorithm SCM [35] (success score
0.505) can already be outperformed with the 15 worst algorithms that all have
a performance below the average (best is IVT [24] with success score 0.358).

We also determined the probabilities that algorithms are removed by global
removal. In doing so, we discovered that some algorithms like SMS, Frag and
LOT are very removal resistant while others like CSK and VTS can be easily
removed despite better average performance. We think easily removed algorithms
cannot utilize their strengths in fusion as these are already widely covered by
other algorithms, but their weaknesses still harm. On the other hand, removal
resistant algorithms likely provide more original/unique strengths that are more
useful for fusion. We think that the probabilities are not only interesting for
evaluating the usefulness of tracking algorithms for fusion, but they are also an
interesting way of estimating the originality/diversity of tracking algorithms. For
the probabilities and a more detailed discussion see our supplemental material.

6 Conclusions

In this paper we presented a new tracking fusion approach that merges the
results of an arbitrary number of tracking algorithms to produce a better tracking
result. Our method is based on the notion of attraction, and the result that
maximizes the attraction of all the trackers is chosen as global tracking result.
We presented different variants of the method, including a weighted combination
of trackers and an approach that favors continuous trajectories throughout the
sequence. The latter method is solved using dynamic programming. In a complete
evaluation we showed that our method clearly outperforms current state of the
art tracking algorithms. On most tested sequences, our method even produces
better results that the best algorithm for that specific sequence. We introduced
further improvements using tracker removal techniques that remove tracking
results before fusion either locally or globally. In addition we presented two
new criteria for evaluating trackers. One measures originality/diversity in the
behavior by utilizing global removal. The other one measures the continuity of
the trajectory. We showed that our approach outperforms existing algorithms in
continuity – most of them even with online fusion.

We think that the awareness that fusion of tracking algorithms actually im-
proves the tracking performance will help to improve tracking methods in gen-
eral. It shows that the combination of several good tracking ideas can clearly
outperform single ideas if the methods are combined in the right way. In our
future work we will investigate this property further to write generic object
tracking algorithms that work well in general.
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